Advanced Higher Knowledge to know Prelim

List the 8 trig identities

Complete the exact value table

	0	π/6	π/4	$\pi/3$	$\pi/2$	π	$3\pi/2$	2π
sin	0	1 2	1/2	3	İ	6	-1	0
cos		13	1	1 2	0	-1	0	1
tan		13		13	undef	0	under	0

Negative Facts

1)
$$\sin(-\theta) = -5 \text{ M} \Theta$$

2)
$$cos(-\theta) = cos \Theta$$

3)
$$tan(-\theta) = -ten \theta$$

Parametric Equations

$$x = f(t)$$
 $y = f(t)$

Gradient =
$$m = \frac{dy}{dx} = \frac{dy}{dx} \times \frac{dy}{dx}$$

$$\frac{d^2y}{dx^2} = \frac{d^2y}{dx} \times \frac{dt}{dx}$$

Volume of Revolution for function around a and b

About the x axis: $\sqrt{z}\pi \int_{a}^{b} y^{2} dx$

About the y axis: V= T Sbaz dy

Functions

Odd Function: f(x) = -f(x)

180° Rotational symmetry around the origin

Even Function: f(x) = f(x)

line Symmitry about the yaxis

Sequences

Arithmetic Term: Un=a+(n-1)d

Geometric term: Un= a(n-)

Sum to infinity: 500 = 9

Matrices

2 by 2

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \det A = ad -bc$$

$$A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d - b \\ -c a \end{pmatrix} \qquad A' = A^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

3 by 3
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

Transformation Matrices

Complex Numbers

If z = a + bi

The modulus is given by $(\geq) = \sqrt{a^2 + b^2}$

The Argument is given by $\tan \theta = \frac{b}{\alpha}$ -TOOKT

The conjugate is given by $\overline{z} = a - bi$

McLaurin Series Useful to Memorise

$$e^{x} = | + x + \frac{x^{7}}{3!} + \frac{x^{3}}{3!} + \frac{x^{n}}{3!}$$

$$\sin x = \frac{x - x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!}$$

$$\cos x = | -x^{2} + x^{n} - x^{6}$$

$$\frac{\partial x}{\partial x} + \frac{\partial x}{\partial x} + \frac{x^{n}}{4!} - \frac{x^{6}}{6!}$$

Differential Equations

For
$$\frac{dy}{dx} + P(x) = Q(x)$$
 the integrating factor $I(x) = e^{\int P(x) dx}$

Complementary Functions

Real and Equal
$$y = (Ax + B)e^{mx}$$

Complex and Conjugate
$$y = e^{px} (A cos qx + B sin qx)$$

Particular Integrals

if
$$sinax$$
 or $cosax$ try $y = Pcosax + Qsinax$ if e^{ax} try $y = Peax$

if
$$y = ax + b$$
 try $y = Pac+ Q$

if
$$y = ax^2 + bx + c$$
 $y = Px^2 + Qx + l$